Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922319

RESUMO

Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil (Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm (Spodoptera frugiperda, FAW), and against infection by sheath blight (Rhizoctonia solani, ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens.

2.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883128

RESUMO

Cercospora cf. sigesbeckiae is an ascomycete fungal pathogen that infects various plants, including important agricultural commodities, such as soybean. Here, we report the first draft genome sequence and assembly of this pathogen.

3.
Phytopathology ; 106(4): 330-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26756827

RESUMO

Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits has been observed to survive for >34 years in stored melon and watermelon seeds. To better understand this remarkable longevity, we investigated the bacterium's tolerance to desiccation and the effect of bacterial localization in different watermelon seed tissues on its survival. We compared the ability of A. citrulli to tolerate desiccation on filter paper discs and on host (watermelon) and nonhost (cabbage, corn and tomato) seeds to two seedborne (Xanthomonas campestris pv. campestris and Pantoea stewartii subsp. stewartii) and one soilborne (Ralstonia solanacearum) plant-pathogenic bacteria. A. citrulli survival on dry filter paper (>12 weeks) was similar to that of X. campestris pv. campestris but longer than P. stewartii subsp. stewartii. Ralstonia solanacearum survived longer than all other bacteria tested. On all seeds tested, A. citrulli and X. campestris pv. campestris populations declined by 5 orders of magnitude after 12 weeks of incubation at 4°C and 50% relative humidity, while R. solanacearum populations declined by 3 orders. P. stewartii subsp. stewartii was not recovered after 12 weeks of incubation. To determine the effect of tissue localization on bacterial survival, watermelon seeds infested with A. citrulli by flower stigma inoculation (resulting in bacterial localization in the embryo/endosperm) or by ovary pericarp inoculations (resulting in bacterial localization under the testa) were treated with peroxyacetic acid or chlorine (Cl2) gas. Following these treatments, a significantly higher reduction in BFB seed-to-seedling transmission was observed for seeds generated by ovary pericarp inoculation (≥89.5%) than for those generated by stigma inoculation (≤76.5%) (P<0.05). Additionally, higher populations of A. citrulli survived when the bacteria were localized to the embryo/endosperm versus the seed coat, suggesting that tissue localization is important for bacterial survival in seed. This observation was confirmed when P. stewartii subsp. stewartii survived significantly longer in stigma-inoculated (embryo/endosperm-localized) watermelon seeds than in vacuum-infiltrated (testa-localized) seeds. Based on these results we conclude that A. citrulli cells are not intrinsically tolerant to desiccation and that localization of the bacterium to testa tissues does not enhance A. citrulli survival. In contrast, it is likely that embryo/endosperm localization enhances the survival of A. citrulli and other bacteria in seeds.


Assuntos
Citrullus/microbiologia , Comamonadaceae/fisiologia , Doenças das Plantas/microbiologia , Dessecação , Flores/microbiologia , Frutas/microbiologia , Interações Hospedeiro-Patógeno , Especificidade de Órgãos , Pantoea/fisiologia , Ralstonia solanacearum/fisiologia , Plântula/microbiologia , Sementes/microbiologia , Especificidade da Espécie , Xanthomonas campestris/fisiologia
4.
Phytopathology ; 105(7): 905-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25775102

RESUMO

The pathogen causing soybean rust, Phakopsora pachyrhizi, was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 2004, P. pachyrhizi was confirmed in Louisiana, making it the first report in the continental United States. Based on yield losses from countries in Asia, Africa, and South America, it was clear that this pathogen could have a major economic impact on the yield of 30 million ha of soybean in the United States. The response by agencies within the United States Department of Agriculture, industry, soybean check-off boards, and universities was immediate and complex. The impacts of some of these activities are detailed in this review. The net result has been that the once dreaded disease, which caused substantial losses in other parts of the world, is now better understood and effectively managed in the United States. The disease continues to be monitored yearly for changes in spatial and temporal distribution so that soybean growers can continue to benefit by knowing where soybean rust is occurring during the growing season.


Assuntos
Glycine max/microbiologia , Phakopsora pachyrhizi/fisiologia , Interações Hospedeiro-Patógeno , América do Norte , Controle de Pragas , Phakopsora pachyrhizi/classificação , Phakopsora pachyrhizi/patogenicidade , Doenças das Plantas
5.
Plant Dis ; 99(11): 1596-1603, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30695960

RESUMO

Isolates of Cercospora kikuchii, a soybean (Glycine max) pathogen causing Cercospora leaf blight and purple seed stain, were tested to determine baseline sensitivities (n = 50) to selected quinone outside inhibitor (QoI) fungicides by conducting radial growth assays on fungicide-amended media. Baseline effective fungicide concentration to inhibit 50% of fungal radial growth (EC50) values were compared with EC50 values for isolates collected in 2011 (n = 50), 2012 (n = 50), and 2013 (n = 36) throughout soybean-producing areas in Louisiana. Median EC50 values for isolates subjected to QoI fungicides were significantly (P = 0.05) higher across all 3 years. Cross-resistance to QoI fungicides was observed in resistant isolates collected in 2011 to 2013. Discriminatory doses were developed for QoI fungicides to distinguish between sensitive and resistant isolates. On average, 89% of all isolates screened in 2011 to 2013 were resistant to QoI fungicides. At a discriminatory dose of thiophanate methyl (TM), a methyl benzimidazole carbamate (MBC) fungicide, at 5 µg/ml, resistance was detected in the 2000, 2011, 2012, and 2013 collections at 23, 38, 29, and 36%, respectively. Isolates exhibiting multiple resistance to QoI fungicides and TM also were detected in 2011, 2012, and 2013 at frequencies of 34, 26, and 31%, respectively. Based on these results, Cercospora leaf blight management strategies in Louisiana using solo applications of QoI or MBC fungicides in soybean should be reconsidered.

6.
Plant Dis ; 93(9): 868-874, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30754540

RESUMO

Cercospora leaf blight (CLB) became much more prevalent in Louisiana beginning in 1999. A previous study showed that the Louisiana population of Cercospora kikuchii, the causal agent, was dominated by a new lineage that differed from those collected in other locations at earlier times. In this study, we tested whether the dominance of the new lineage was caused by higher aggressiveness and screened soybean cultivars for resistance to CLB. Representative isolates from both lineages were used individually to inoculate six soybean cultivars in the greenhouse. Contrary to expectations, the new lineage was less aggressive. Three virulence groups were defined in this pathogen based on correlation of the aggressiveness of individual isolates on soybean cultivars. Other possible causes that led to the dominance of the new lineage in Louisiana are discussed. Eleven soybean cultivars were tested for disease reaction at two locations over 3 years in the field. Two cultivars, AG5701 (Asgrow) and TV59R85 (Terral), were among the more resistant cultivars to CLB both in the greenhouse and in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...